CNNH

[AAAI 2014] Supervised Hashing via Image Representation Learning [paper] [code]
Rongkai Xia , Yan Pan, Hanjiang Lai, Cong Liu, Shuicheng Yan.

Overcome

之前的哈希方法,大都使用手工的图像特征(如GIST等)作为图像的特征表达, 但是这些手工特征是采用无监督的方式提取的,难以很好得保存原始图片的语义信息。而深度深度神经网络可以很好得表达图像特征信息,因此作者便提出了基于深度的哈希检索方法——CNNH。

NINH

[CVPR 2015] Simultaneous Feature Learning and Hash Coding with Deep Neural Networks [paper]

Hanjiang Lai, Yan Pan, Ye Liu, Shuicheng Yan.

Overcome

  • 在大多数哈希方法中,图像都用手工特征表示,这些特征不能很好得保存原始图片的语义信息。
  • 哈希方法大都分为编码量化两个过程,基于手工向量的优化结果可能难以同时兼容编码和量化的过程,从而造成子优化问题。

Post Tuned Hashing,PTH

[ACM 2018] Post Tuned Hashing_A New Approach to Indexing High-dimensional Data [paper] [code]

Zhendong Mao, Quan Wang, Yongdong Zhang, Bin Wang.

Overcome

  • 大多数哈希方法都有二值化过程,二值化加速了检索过程,但同时难以避免得也破环了原始数据的相邻结构。

Supervised Hashing with Kernels, KSH

Notation

该论文中应用到较多符号,为避免混淆,在此进行解释:

n:原始数据集的大小

l:实验中用于监督学习的数据集大小(矩阵S行/列的大小)

m:辅助数据集,用于得到基于核的哈希函数

r:比特位数量/哈希函数的个数

Spherical Hashing,球哈希

Introduction

在传统的LSH、SSH、PCA-ITQ等哈希算法中,本质都是利用超平面对数据点进行划分,但是在D维空间中,至少需要D+1个超平面才能形成一个封闭、紧凑的区域。而球哈希方法利用超球面(hypersphere)对数据进行划分,在任何维度下,只需要1个超球面便可形成一个封闭的区域。利用球哈希方法,每个区域内样本的最大距离的平均值会更小,说明各个区域的样本是更紧凑的。这样更符合邻近的含义,更适合在进行相似搜索时使用。

Iterative Quantization,ITQ

Abstract

针对大规模的图像检索问题,论文提出了一个高效的ITQ算法。该算法先将中心化后的数据映射到超立方体的顶点上,再通过优化过程寻找一个旋转矩阵,使得数据点经过旋转后,与超立方体的顶点数据具有最小的量化误差。ITQ算法涉及到了multi-class spectral clustering(不懂)以及Orthogonal Procrustes problem,且可以通过PCA(无监督)或CCA(监督)的方法事先对数据进行降维。该方法的实验结果优于大部分start-of-the-art方法。

Locality Sensitive Hashing, LSH

基本思想

局部敏感(Locality Senstitive):即空间中距离较近的点映射后发生冲突的概率高,空间中距离较远的点映射后发生冲突的概率低。

局部敏感哈希的基本思想类似于一种空间域转换思想,LSH算法基于一个假设,如果两个文本在原有的数据空间是相似的,那么分别经过哈希函数转换以后的它们也具有很高的相似度;相反,如果它们本身是不相似的,那么经过转换后它们应仍不具有相似性。

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×