Zero-shot Learning

介绍

在传统的分类模型中,为了解决多分类问题(例如三个类别:猫、狗和猪),就需要提供大量的猫、狗和猪的图片用以模型训练,然后给定一张新的图片,就能判定属于猫、狗或猪的其中哪一类。但是对于之前训练图片未出现的类别(例如牛),这个模型便无法将牛识别出来,而ZSL就是为了解决这种问题。在ZSL中,某一类别在训练样本中未出现,但是我们知道这个类别的特征,然后通过语料知识库,便可以将这个类别识别出来。

zero-shot learning的一个重要理论基础就是利用高维语义特征代替样本的低维特征,使得训练出来的模型具有迁移性。语义向量就是高维语义特征,比如一个物体的高维语义为“四条腿,有尾巴,会汪汪叫,宠物的一种”,那我们就可以判断它是狗,高维语义对它没有细节描述,但是能够很好的对其分类,分类是我们的目的,所以可以舍去低维特征,不需要“全面”。

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×